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Abstract

Graph Neural Networks (GNNs) have demonstrated signif-
icant achievements in processing graph data, yet scalability
remains a substantial challenge. To address this, numerous
graph coarsening methods have been developed. However,
most existing coarsening methods are training-dependent,
leading to lower efficiency, and they all require a predefined
coarsening rate, lacking an adaptive approach. In this pa-
per, we employ granular-ball computing to effectively com-
press graph data. We construct a coarsened graph network
by iteratively splitting the graph into granular-balls based
on a purity threshold and using these granular-balls as su-
per vertices. This granulation process significantly reduces
the size of the original graph, thereby greatly enhancing
the training efficiency and scalability of GNNs. Addition-
ally, our algorithm can adaptively perform splitting with-
out requiring a predefined coarsening rate. Experimental re-
sults demonstrate that our method achieves accuracy compa-
rable to training on the original graph. Noise injection exper-
iments further indicate that our method exhibits robust per-
formance. Moreover, our approach can reduce the graph size
by up to 20 times without compromising test accuracy, sub-
stantially enhancing the scalability of GNNs. The code can
be found in https://github.com/mxjun17/Granular-Ball-Node-
Classifction.

Introduction
In recent years, graph neural networks (GNNs) have shown
significant potential across various domains, including so-
cial network analysis, drug discovery, finance, and material
science (Fout et al. 2017; Ying et al. 2018; Li and Gold-
wasser 2019; Zhou et al. 2018; Wang 2017; Feng et al.
2022; Xia, Wang, and Gao 2023). The increasing preva-
lence of large-scale graph data offers richer information and
larger training sets for learning algorithms. However, this
also amplifies the challenge of processing such data, de-
manding substantial computational resources and escalating
costs, particularly during model training and parameter tun-
ing (Huang et al. 2021). A practical solution is to simplify
or reduce the graph, which not only accelerates GNNs but
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Figure 1: Comparing original graph training with coarsening
training. The coarsening approach reduces graph complexity
while preserving key structural and label information, im-
proving graph neural network training efficiency.

also enhances graph data analysis tasks like storage, visual-
ization, and retrieval.

Training graph neural networks (GNNs) often incurs sig-
nificant computational costs. To mitigate this, dataset con-
densation or distillation has been explored, constructing
smaller synthetic datasets for training (Jin et al. 2021, 2022).
However, these methods may demand high network per-
formance and require precise compression control to be
effective. Graph coarsening offers a solution by reducing
large graphs into smaller structures while preserving key at-
tributes, based on algebraic multigrid theory. Widely used
in graph partitioning, summarization, and machine learning
(Stüben 2001; Chen, Saad, and Zhang 2022; Dhillon, Guan,
and Kulis 2007; Liu et al. 2018; Shuman, Faraji, and Van-
dergheynst 2015), coarsening methods often focus on pre-
serving spectral features (Wilson and Zhu 2008; Loukas and
Vandergheynst 2018; Loukas 2019; Jin, Loukas, and JaJa
2020; Imre et al. 2020). Despite their benefits, the high mem-
ory and computational costs of spectral methods can limit
their scalability. While applied in deep learning (Xie et al.
2020b; Fahrbach et al. 2020; Huang et al. 2021; Pang, Zhao,



and Li 2021; Kumar et al. 2023; Zhang et al. 2022; Dick-
ens et al. 2024), coarsening faces challenges like excessive
information loss, which can degrade model performance.

Figure 1 illustrates the graph coarsening training process,
highlighting the critical importance of effective coarsening,
as it inevitably leads to the loss of some original graph infor-
mation. While training-dependent graph coarsening meth-
ods like CMGC(Dickens et al. 2024) and GCOND(Jin et al.
2021) achieve high accuracy, they suffer from inefficiency
and prolonged training times. In contrast, preprocessing-
based methods like SCAL(Huang et al. 2021) offer better ef-
ficiency but lack the guidance of label information, resulting
in slightly lower accuracy. Moreover, most existing graph
coarsening techniques are not adaptive and require a prede-
fined coarsening ratio.

To address these challenges, we propose a Supervised
Granular-Ball Graph Coarsening (SGBGC) method, which
optimizes information preservation by integrating node label
information with graph structural characteristics and intro-
duces an adaptive coarsening mechanism. This adaptability
enhances the flexibility of graph coarsening. Our approach
employs an innovative granular-ball generation mechanism,
initially partitioning granular-balls based on node label sim-
ilarity, followed by granularity adjustments to refine these
granular-balls into high-quality super nodes. We conducted
extensive experiments on real datasets to demonstrate the
effectiveness of the SGBGC method. Our approach outper-
forms all existing graph coarsening architectures for node
classification and achieves state-of-the-art results on five
benchmark datasets for node classification. Detailed anal-
yses and robustness studies further illustrate the superiority
of our methods. In summary, the main contributions are:

• We propose a novel Supervised Granular-Ball Graph
Coarsening (SGBGC) method that adaptively utilizes
granular-balls of varying sizes to represent the sam-
ple space, maintaining crucial graph structural properties
while enhancing the scalability of Graph Neural Network
(GNN) models.

• SGBGC reduces time complexity by avoiding the need
to calculate distances between all node pairs within the
graph. Additionally, Our method has demonstrated supe-
rior noise resistance in robustness experiments, outper-
forming existing graph coarsening techniques.

• Extensive testing and comparisons on real-world datasets
have confirmed the effectiveness and accuracy of SGBGC.
Our method has achieved higher precision in experiments,
validating its efficacy for GNN training and inference.

Related Works
Graph Coarsening and Condensation
During the training of Graph Neural Networks (GNNs), due
to the typically high computational costs, methods such as
graph coarsening and graph condensation are increasingly
gaining attention. These methods aim to create smaller syn-
thetic datasets for training GNNs, thereby reducing costs
to some extent. Among these, SCAL (Huang et al. 2021)
demonstrated scalable training of GNNs through graph

coarsening techniques, proving that even with a reduction
of graph nodes to one-tenth of the original size, there was
no significant impact on classification accuracy. FGC (Ku-
mar et al. 2023) designed an innovative optimization-based
graph coarsening framework, which takes the adjacency ma-
trix and node features as inputs, and jointly learns the coars-
ened versions of the graph and feature matrices to ensure
the desired properties while optimizing graph representa-
tion. (Jin et al. 2021, 2022) proposed the GCOND graph
compression method, which not only reduces the number
of nodes but also compresses node features and structural
information in a supervised manner. CMGC (Dickens et al.
2024) focuses on preserving graph convolution operations
while enhancing existing coarsening techniques by merging
nodes with similar structures. It is also a training-dependent
coarsening method, delivering state-of-the-art performance.

Granular-Ball Computing
Building on the theoretical foundations of traditional gran-
ularity computation and integrating the human cognitive
mechanism of ’macro-first’ (Chen 1982), Wang (Wang
2017) pioneered the concept of multi-granularity cognitive
computation. Following this approach, Xia (Xia et al. 2019)
proposed an effcient, robust and interpretable computational
method known as granular-ball computing. Compared to tra-
ditional methods that input data at the finest granularity of a
point, granular-ball computing uses granular-balls to cover
and represent data and takes granular-balls as inputs, of-
fering high effciency, robustness. A granular-ball is defined
by a point set covered by the ball, having a centroid and
a radius in the standard formation, such as in granular-ball
classification. Since its introduction, although the theory of
granular-ball computing has not been developed for long,
it has been widely applied across multiple domains of arti-
ficial intelligence, giving rise to various granular-ball gen-
eration techniques and related computational models. Spe-
cific examples include granular-ball classifiers (Xia et al.
2024b; Quadir and Tanveer 2024; Xia et al. 2024c), granular-
ball clustering (Cheng et al. 2023; Xie et al. 2024c,b,a),
granular-ball sampling methods (Xia et al. 2021), granular-
ball rough set(Xia et al. 2023, 2020; Zhang et al. 2023),
granular-ball three way decision(Yang et al. 2024; Xia et al.
2024a), and developments like granular-ball reinforcement
learning (Liu et al. 2024). Furthermore, several applications
have demonstrated the effectiveness of granular-ball repre-
sentation, such as granular-ball representation in text ad-
versarial defense(Wang et al. 2024a), label noise combat-
ing(Wang et al. 2024b; Dai et al. 2024).

Preliminaries
Graph Coarsening
We represent a graph with N nodes and M edges as G =
(V, E ,X), where V is the set of nodes, E is the set of edges,
X represents the features of the nodes, and Y represents
the set of node labels. All graph data in this paper are undi-
rected graphs. We use A ∈ {0, 1}N×N to denote the ad-
jacency matrix of G, i.e., the (i, j)-th entry in A is 1 if
and only if there is an edge between vi and vj . Given an



Figure 2: The overview of the SGBGC architecture. Our method consists of four stages: coarse partitioning, fine-grained
splitting, granular-ball graph construction, and GNN training on the coarsened graph. In the coarse partitioning stage, the graph
is divided into

√
N clusters, where N is the total number of nodes, with each cluster evenly divided based on label categories.

The fine-grained splitting stage divides clusters further based on granular-ball quality until the specified threshold is reached.
Finally, the granular-ball graph is constructed and used for GNN training to produce coarsened embeddings.

undirected graph G, graph coarsening seeks to find a coarser
graph G′ = (V ′, E ′,X′) that approximates G, where V ′ is the
set of super nodes obtained after coarsening, E ′ is the set of
super edges, X′ represents the features of the super nodes,
and A′ is the adjacency matrix of the coarser graph. The
node count in G′ is n < N and the edge count is m < M .
By computing a partition P = {C1, C2, . . . , Cn}, we can
construct G′, where each cluster Ci corresponds to a super
node in G′, and the connections between these super nodes
Ci and Cj form the super edges, i.e., a tightly connected
subset of nodes from the original graph.

Traditional Granular-Ball Computing
The core concept of granular-ball computing involves par-
titioning the sample space into manageable segments using
granular-balls. These granular-balls serve as the basic units
for learning and facilitate multi-granularity representation
and computation. The traditional granular-ball is defined by
a center point and a radius, encompassing all points within
the specified radius. Formally, a granular-ball centered at a
point c ∈ Rd with radius r is defined as:

GB = {x ∈ Rd : ∥x− c∥ ≤ r}, (1)

where ∥x− c∥ denotes the Euclidean distance between any
point x ∈ Rd and the center c ∈ Rd. The radius r is de-
termined based on the distribution of data points within the
cluster, providing a comprehensive representation of the data
within that region. To ensure that the entire dataset D ⊆ Rd

is covered, the dataset is partitioned into n granular-balls.
The collection of these granular-balls, denoted as GBs =
{GB1,GB2, . . . ,GBn}, is used such that D ⊆

⋃n
i=1 GBi.

This ensures that every data point in D is included in at

least one granular-ball, facilitating complete coverage of the
sample space. By using granular-balls instead of individual
data points, granular computing simplifies data representa-
tion and reduces computational complexity. This structure
forms a cluster that can be effectively used to represent spa-
tial relationships in data.

Methodology
Overview
Figure 2 presents an overview of our proposed SGBGC
framework. In contrast to traditional granular-ball comput-
ing, which primarily focuses on abstract data granulation,
in graph-based scenarios, a granular-ball GB integrates both
structural and feature-specific properties of graph data.

Definition 1: Granular-Ball on Graph
Consider an undirected graph G = (V, E ,X,A), where V is
the set of nodes with |V| = N representing the total number
of nodes, E is the set of edges with |E| = M indicating the
total number of edges, X is the matrix of node features, and
A is the adjacency matrix of the graph. A granular-ball GB
is defined as a connected subgraph of G, represented by:

GB = (Vgb, Egb,Xgb,Agb) (2)

Here, Vgb ⊆ V represents the subset of nodes in the
granular-ball, Egb ⊆ E represents the subset of edges among
nodes within Vgb, Xgb ⊆ X represents the subset of fea-
tures corresponding to Vgb, and Agb represents the adja-
cency matrix corresponding to Vgb. The granular-ball GB
must be a connected subgraph, which means for any two
nodes vi, vj ∈ Vgb, there does not exist a situation where
d(vi, vj) = ∞. Here, d(vi, vj) represents the shortest path



distance (in terms of the number of edges) between nodes vi
and vj in the graph. The center node c of a granular-ball is
defined as the node within Vgb with the maximum degree:

c = argmax
v∈Vgb

deggb(v), (3)

where deggb(v) is the degree of node v within the granular-
ball GB, defined as the number of edges connected to v
within Egb.

Definition 2:The Purity of the Granular-Ball
The purity T of a granular-ball GB is defined as the ratio of
the count of the most frequent label to the total number of
nodes within the ball. This ratio quantifies the uniformity of
labeling within GB. Mathematically, it is given by:

T =
max(ni)

n
, i = 1, 2, . . . , k, (4)

where ni is the number of nodes with label i in GB, n is
the total number of nodes in GB, and k is the number of
distinct labels in the dataset. Here, T falls strictly within the
range 1

k < T ≤ 1, where T = 1 indicates that all nodes in
GB share the same label, representing maximum purity. The
lower bound 1

k occurs when the node labels are distributed as
evenly as possible across the k labels, representing the least
purity achievable under the constraint that one label must be
most frequent.

Problem Definition
In our framework, the original graph G = (V, E ,X) is
transformed into a granular-ball graph, denoted as G̃ =
(Ṽ, Ẽ , X̃), by coarsening the graph into n granular-balls.
Each granular-ball GBj corresponds to a super node in G̃,
forming the set Ṽ = {GB1,GB2, . . . ,GBn} where n is the
total number of super nodes. The goal is to obtain a coars-
ened graph G̃ that reduces the complexity of the original
graph while retaining essential structural and feature infor-
mation. In this coarsened graph G̃, the adjacency matrix Ã is
defined such that an element Ãij equals 1 if there is an edge
between super nodes GBi and GBj ; otherwise, Ãij = 0.
Each node vi in the original graph has a label yi, and in the
node classification task, the classifier is initially aware of the
labels of a subset of nodes VL. The goal of node classifica-
tion is to infer the labels of nodes in V \ VL by learning
a classification function from the coarsened graph G̃, effec-
tively utilizing the reduced graph structure to predict labels
with reduced computational resources while maintaining or
even enhancing prediction accuracy.

Supervised Granular-Ball Graph Coarsening
The SGBGC method comprises two main stages: initial
coarse partitioning and fine-grained binary splitting. In the
initial stage, the goal is to simplify the graph structure by es-
tablishing a uniform distribution of granular-balls based on
node labels and their degree of connectivity. Starting with
the highest degree nodes as centers, α =

√
N centers are

chosen, where N is the total number of nodes. The value of√
N is an empirical choice, referenced from previous work

(Xie et al. 2020a; Bezdek and Pal 1998), which has been
shown to balance the trade-off between computational com-
plexity and accuracy. These α centers are then evenly dis-
tributed among the k label categories, resulting in each cate-
gory initially having α/k centers. This setup forms the pre-
liminary granular-ball distribution,

GBinit = {GB1,GB2, . . . ,GBα}, (5)
which covers the entire graph dataset. The choice of high-
degree nodes ensures that the initial centers are well-
connected, facilitating effective coverage of the graph. Each
GBi (1 ≤ i ≤ α) in GBinit undergoes binary splitting in the
fine-grained phase. For each GBi, the algorithm selects the
two highest-degree nodes as centers and splits GBi into two
new granular-balls, GBc1 and GBc2, based on the shortest
path criterion:
c1 = argmax

v∈Vgbi

deggbi(v), c2 = argmax
v∈Vgbi

\{c1}
deggbi(v).

(6)
The nodes in GBi are assigned to the nearest center c1 or c2
based on the shortest path:

v ∈ GBc1 ⇐⇒ d(v, c1) ≤ d(v, c2), (7)
v ∈ GBc2 ⇐⇒ d(v, c2) < d(v, c1). (8)

The splitting continues iteratively until the purity of each
child granular-ball meets a predefined threshold T = 1,
meaning that each granular-ball must contain nodes with the
same label. High purity T in a granular-ball indicates strong
label consistency, preserving or enhancing the discrimina-
tive properties of the original graph. Conversely, low purity
T suggests a heterogeneous label mix, potentially impairing
model performance. Therefore, in preliminary experiments,
the purity threshold is typically set high to encourage clear
decision boundaries. This strict purity threshold ensures that
the granular-balls are homogeneous in terms of node labels,
which helps maintain label consistency and improves the
performance of downstream classification tasks. Algorithm
3 details this process, dynamically adjusting granular-ball
sizes to capture graph data complexity.

Constructing the Granular-Ball Graph The construc-
tion of a granular-ball graph, G̃, involves a transformation
from the set of granular- balls derived from the original
graph G = (V, E ,X). Each granular-ball is represented as a
super node in G̃, which initially contains no nodes or edges,
i.e., G̃ = ∅. Node indices from V are associated with their
respective granular-balls based on their labels and connec-
tivity, defining a mapping f : V → {GB1,GB2, . . . ,GBn},
where each GBi is a granular-ball. This mapping is used to
establish edges between super nodes in G̃ as follows:

(u, v) ∈ E ⇒ (f(u), f(v)) ∈ Ẽ if f(u) ̸= f(v). (9)
This condition ensures that an edge is added between two
different super nodes in G̃ if the corresponding original
nodes u and v belong to different granular-balls. This con-
nects granular-balls that share a direct link in the original
graph, avoiding self-loops and ensuring that G̃ represents the
higher-level structure of G. This methodology enhances the
representation of graph by focusing on broader connectivity
patterns while preserving essential graph properties.



Algorithm 1: Training GNN with Granular-Ball Graph
Coarsening
Input: Graph G = (V, E ,X), Labels Y
Output: Trained weight matrix W∗

1: Apply the SGBGC algorithm on G, and output a
partition P .

2: Construct the Granular-Ball Graph G̃ using partition P .
3: Compute the feature matrix of G̃, X̃ = P⊤X.
4: Calculate the labels of G̃, Ỹ = argmax(PY).
5: Train parameter W to minimize the loss

ℓ(GNNG̃(W), Ỹ).
6: Obtain an optimal weight matrix W∗.
7: Return W∗.

Training GNN with SGBGC
Next, we incorporate the coarsened graph into the GNN
models for training. We denote a GNN model based
on graph G as GNNG(W). Given a loss function ℓ,
such as cross-entropy, the loss of model is expressed as
ℓ(GNNG(W),Y). We train a GNN model using Ggb and the
corresponding labels Ỹ, with the objective to minimize the
loss function ℓ(GNNGgb(W), Ỹ) on the granular-ball coars-
ened graph, where W represents the model parameters. Ul-
timately, the optimal parameters W∗ obtained from training
on the coarsened graph are used in the GNN model on the
original graph G for downstream tasks.

In the granular-ball coarsened graph, each node is a su-
per node, corresponding to a cluster of nodes in the original
graph. The feature vector of each super node is the mean
of all node feature vectors in the cluster, i.e., X̃ = P⊤X.
We also set each label of super node accordingly, i.e., Ỹ =
P⊤Y. However, super nodes may contain nodes from mul-
tiple categories. In such cases, we select the dominant la-
bel, i.e., the category with the highest purity, as the label for
the super node by performing an argmax operation on Ỹ.
During GCN model training, we can define the granular-ball
graph convolution as:

Zgb = D̃
−1/2
gb ÃgbD̃

−1/2
gb X̃gbW

∗, (10)

where Zgb denotes the output features of the granular-ball
graph nodes, Ãgb = Ãgb+Ĩgb, with Ãgb being the adjacency
matrix of the granular-ball graph and Ĩgb an identity matrix
to incorporate self-connections. D̃gb is the degree matrix of
Ãgb, X̃gb are the input features of the granular-ball graph
nodes, and Wgb is the matrix of weights to be learned. Al-
gorithm 1 details the use of granular-ball graph coarsening
within the GNN framework.

Experiments
Experimental Setup
Datasets We evaluate our methods on five standard node
classification datasets: Cora, Citeseer, Pubmed(Kipf and
Welling 2016), Co-CS, and Co-Phy(Shchur et al. 2018).
Each dataset features nodes represented as documents with

Figure 3: Comparison of time costs among different coars-
ening methods.

sparse bag-of-words feature vectors, and edges representing
citation links between these documents.

Baselines To evaluate the effectiveness of SGBGC in
graph coarsening, we compare our approach against three
established baselines: FGC (Kumar et al. 2023), SCAL
(Huang et al. 2021), Gcond (Jin et al. 2021), and CMGC
(Dickens et al. 2024). FGC utilizes training to derive a coars-
ened graph, optimizing for feature and connection preser-
vation. Gcond focuses on maintaining the spectral prop-
erties of the graph, beneficial for applications requiring
eigenstructure preservation. CMGC aims to retain the graph
convolution operations and improves the existing coarsen-
ing methods by merging structurally simlar nodes. SCAL,
similar to SGBGC, pre-processes the graph to produce a
coarsened version by incorporating various coarsening tech-
niques, specifically VNGC, VEGC(Loukas 2019), GSGC,
and JCGC(Ron, Safro, and Brandt 2011).

Implementation Details All models were implemented
using Python and PyTorch Geometric, with experiments
conducted on an Intel(R) Xeon(R) W-2245 CPU @3.90GHz
and an NVIDIA GeForce RTX 3090 GPU. The dataset splits
were handled according to the methodologies described in
references (Huang et al. 2021), and accuracy (ACC) was
used as the evaluation metric. Results reported are averages
over 20 runs, along with standard deviations to indicate vari-
ability. To ensure fairness in comparisons, our models uti-
lized the same network architectures as the baselines. We
uniformly use Adam optimizer with learning rates of 0.01
and set the weight decay to 0.0005. For the coarse GCN, the
number of training epochs are 200 and the number of hidden
laywers are 64 and the early stopping is set to 10.

Experiment Results
Node Classification Performance In a transductive set-
ting, using GCN as the base model, as shown in Table 1, it
is evident that our SGBGC method not only maintains ac-
curacy comparable to the original graph but also achieves
significant improvements over existing unsupervised graph
coarsening methods. The GCOND, FGC, and CMGC meth-
ods require training for coarsening, which is highly time-



Table 1: Performance comparison of SGBGC and other coarsening methods under different ratios (r) for node classification in
GNNs.(mean±std%, the best results are bolded, the second results are underlined, and ”-” means out of memory).

DataSet Ratio (r) VNGC VEGC JCGC GSGC GCOND FGC CMGC SGBGC

Cora
0.5 77.28±1.18 78.36±1.75 79.85±1.24 81.31±1.59 - 86.22±0.15 88.40±0.67 87.85±0.64
0.3 78.33±1.78 76.97±1.86 77.79±1.84 80.05±0.86 76.49±0.71 85.39±0.27 85.96±0.84 86.29±0.79
0.1 69.19±0.73 62.76±1.94 67.44±1.25 68.32±1.08 80.54±1.61 81.66±0.36 82.50±0.93 82.99±1.00

Citeseer
0.5 73.16±0.64 71.31±1.10 71.91±1.56 71.23±1.69 - 76.28±0.21 77.33±0.85 75.25±1.02
0.3 70.12±1.16 42.32±2.08 67.58±1.12 66.13±2.03 71.26±3.01 73.16±0.27 74.85±0.92 75.73±0.88
0.1 60.97±2.79 41.88±1.18 52.68±2.35 55.24±1.52 69.67±2.37 72.87±1.13 73.52±1.01 73.69±0.93

Pubmed
0.3 83.95±0.21 82.54±0.35 82.13±0.64 83.99±0.27 - 83.36±0.05 85.80±0.30 86.28±0.20
0.1 81.55±0.28 82.49±0.50 81.83±0.54 82.96±0.34 - 82.44±0.07 83.75±0.45 84.04±0.36

0.05 78.12±3.00 82.48±0.42 81.51±1.31 81.81±0.31 80.23±0.08 81.64±0.29 82.37±0.53 82.50±0.38

Co-CS
0.3 56.05±5.36 53.61±4.19 46.87±4.59 52.76±4.78 - 89.94±0.04 75.54±2.35 93.09±0.13
0.1 37.67±2.62 33.69±2.96 33.14±0.36 39.79±0.96 - 88.47±0.06 72.57±3.04 92.22±0.22

0.05 23.22±0.12 34.05±1.16 27.09±3.46 33.08±0.41 82.76±0.94 83.85±1.35 83.34±1.87 91.21±0.30

Co-Phy
0.3 90.76±2.04 90.66±2.77 86.33±2.79 89.02±3.87 - 89.94±0.15 96.30±0.13 96.35±0.09
0.1 76.00±0.94 77.73±2.29 73.61±2.41 69.86±0.09 - 89.23±0.28 95.76±0.16 95.88±0.11

0.05 72.18±1.76 76.99±1.90 72.42±1.50 69.84±0.15 85.06±0.33 81.91±0.15 95.36±0.21 95.61±0.14

Figure 4: Comparison of different noise rates on Citeseer
with 0.3 coarsening ratio, including original graph and vari-
ous coarsening methods.

consuming. Additionally, GCOND often runs out of mem-
ory capacity at higher coarsening rates. In contrast, SGBGC
is less time-intensive while still ensuring accuracy across
most coarsening rate settings. Notably, at a coarsening rate
of 0.1, our method demonstrates a substantial performance
boost, achieving an accuracy of 82.99%, which is markedly
higher than that of other methods. This indicates that even
under extreme graph compression, our method preserves
high accuracy, showcasing robust information retention ca-
pabilities. In the Citeseer dataset, our method demonstrates
superior performance across most tested coarsening rates.
Specifically, at a coarsening rate of 0.1, our method achieved
an accuracy of 73.6%, which represents a significant im-
provement over other methods. Although at a coarsening
rate of 0.5 our method is slightly outperformed by CMGC,

Table 2: Comparison of classification performance with
adaptive granular-ball coarsening rates. FULL represents
performance on uncoarsened datasets.

Datasets Cora Citeseer Pubmed Co-CS Co-Phy

Ratio (r) 0.45 0.49 0.42 0.41 0.36

SGBGC 87.57 75.38 86.29 93.28 96.39
FULL 88.38 76.48 86.40 93.78 96.65

the overall results still confirm the generalizability and ro-
bustness of our approach across different graph datasets.
Results from the Pubmed dataset also support the superi-
ority of our method, particularly at a coarsening rate of 0.3,
where the accuracy reached 86.28%, showing minimal per-
formance loss compared to the original graph. On the Co-CS
and Co-Phy datasets, our method exhibited remarkable per-
formance improvements. Especially in the Co-CS dataset,
even at very low coarsening rates (such as 0.1 and 0.05), the
accuracy of SGBGC exceeded 91.21%, far surpassing other
methods. These results emphasize the powerful capability of
our method in handling large-scale graph data with complex
structures. By dynamically leveraging label information and
a purity-based granular-ball splitting strategy, our method
effectively enhances the quality of graph coarsening while
also ensuring efficient computational performance.

Adaptive approach Existing graph coarsening methods
often lack support for adaptive coarsening, requiring a pre-
determined coarsening rate to proceed. This limitation can
hinder their flexibility and scalability. In contrast, our SG-
BGC method introduces an adaptive coarsening mechanism,
where the coarsening rate is not pre-specified but is in-
stead determined dynamically through granular-ball split-
ting. This allows SGBGC to adjust autonomously, enhanc-
ing scalability and adaptability to various graph sizes. The



Figure 5: The memory usage of APPNP and granular-ball coarsened APPNP.

Figure 6: Parametric Analysis of Initial Centers

results in Table 2 demonstrate that under adaptive condi-
tions, SGBGC achieves performance very close to that of the
original graph, validating the effectiveness of our approach.

Computational Efficiency of SGBGC For a fair compar-
ison of coarsening methods, we set the coarsening rates as
follows: 0.3 for the Cora and Citeseer datasets, and 0.05 for
the PubMed, Co-CS, and Co-Phy datasets. Figure 3 shows
the performance results. On the Cora dataset, SGBGC re-
quired only 4.92 seconds, which is 51% faster than VNGC
and 46% faster than VEGC. On the Citeseer dataset, SG-
BGC completed processing in 3.47 seconds, which is 66%
faster than both VNGC and GSGC.

For larger datasets, the advantages of SGBGC become
more pronounced. On the Co-CS dataset, SGBGC com-
pleted processing in 20.18 seconds, outperforming VNGC
by 44% and GSGC by over 9 times. Similarly, on the Co-
Phy dataset, SGBGC finished in 62.72 seconds, nearly 17
times faster than GSGC. These results clearly indicate that
the SGBGC method consistently outperforms other coarsen-
ing methods in terms of speed, especially on larger datasets.
The superior performance of SGBGC is likely due to its re-
liance on local computations (i.e., granular-ball subgraphs)
rather than global computations, making it highly efficient
for large-scale datasets. Due to its extremely slow processing
time, Gcond and CMGC were excluded from our compar-
isons; for example, Gcond took nearly two hours and CMGC
over a thousand seconds on the Cora dataset.

Memory Usage Figure 5 shows the memory usage of
APPNP at different coarsening ratios. Since parameter space
is negligible compared to input tensor size, coarse APPNP’s
memory usage is roughly proportional to the coarsening ra-
tio. Our method significantly reduces memory consumption
by several orders of magnitude on medium to large datasets.

Robustness Analysis Under Different Noise Rates Fig-
ure 4 evaluates various coarsening methods under 5%, 10%,
15%, and 20% noise on the Citeseer dataset with a 0.3 coars-
ening ratio. SGBGC consistently outperformed other meth-
ods and the noisy original graph. At 5% noise, SGBGC
achieved 75.20% accuracy, surpassing the original graph’s
73.21%. Even at higher noise levels, SGBGC maintained
superior accuracy, significantly better than both the original
graph and the next best method, VNGC. SGBGC’s robust-
ness likely stems from granular-ball computing, which mit-
igates label noise through node clustering based on purity
thresholds. This approach preserves structural and feature
integrity, enhancing node classification accuracy. These re-
sults underscore SGBGC’s superior noise tolerance, making
it a robust choice for real-world applications.

Parameter Analysis We experimented with different ini-
tial center numbers, as shown in Figure 6. The results in-
dicate that our method maintains consistent performance
across varying settings, demonstrating strong stability. Ex-
perimental results show that in most cases, when the num-
ber of initial centers is too large, the accuracy will be slightly
improved, but the efficiency will be correspondingly slower.
For example, on the Pubmed dataset, coarsening takes 29.7
seconds with

√
N centers, 35.0 seconds with 2

√
N , and 78.4

seconds with 4
√
N , with only minor accuracy gains. Thus,√

N was chosen as the optimal value, informed by both our
experiments and empirical evidence from the previous work
(Xie et al. 2020a), which has been shown to balance the
trade-off between computational complexity and accuracy.

Conclusion and Future Work
In this work, we introduce Supervised Granular-Ball Graph
Coarsening (SGBGC), a novel method for supervised graph
coarsening that significantly enhances the scalability of
GNNs by compressing the original graph over tenfold with-
out losing accuracy. SGBGC is an efficient and adaptive ap-
proach requiring minimal hyperparameters, and it can also
operate in a non-adaptive form based on the coarsening ra-
tio. Experiments show that SGBGC outperforms several ad-
vanced methods in both precision and efficiency, notably ac-
celerating GNN training in node classification tasks. While
our current architecture is focused on node classification as a
downstream task, future work will explore other applications
such as graph classification and link prediction to further
broaden the applicability of our graph coarsening method.
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